Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.959
1.
Commun Biol ; 7(1): 548, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719881

Hyperthyroidism is a well-known trigger of high bone turnover that can lead to the development of secondary osteoporosis. Previously, we have shown that blocking bone morphogenetic protein (BMP) signaling systemically with BMPR1A-Fc can prevent bone loss in hyperthyroid mice. To distinguish between bone cell type-specific effects, conditional knockout mice lacking Bmpr1a in either osteoclast precursors (LysM-Cre) or osteoprogenitors (Osx-Cre) were rendered hyperthyroid and their bone microarchitecture, strength and turnover were analyzed. While hyperthyroidism in osteoclast precursor-specific Bmpr1a knockout mice accelerated bone resorption leading to bone loss just as in wildtype mice, osteoprogenitor-specific Bmpr1a deletion prevented an increase of bone resorption and thus osteoporosis with hyperthyroidism. In vitro, wildtype but not Bmpr1a-deficient osteoblasts responded to thyroid hormone (TH) treatment with increased differentiation and activity. Furthermore, we found an elevated Rankl/Opg ratio with TH excess in osteoblasts and bone tissue from wildtype mice, but not in Bmpr1a knockouts. In line, expression of osteoclast marker genes increased when osteoclasts were treated with supernatants from TH-stimulated wildtype osteoblasts, in contrast to Bmpr1a-deficient cells. In conclusion, we identified the osteoblastic BMP receptor BMPR1A as a main driver of osteoporosis in hyperthyroid mice promoting TH-induced osteoblast activity and potentially its coupling to high osteoclastic resorption.


Bone Morphogenetic Protein Receptors, Type I , Bone Resorption , Hyperthyroidism , Mice, Knockout , Osteoblasts , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Osteoblasts/metabolism , Hyperthyroidism/metabolism , Hyperthyroidism/genetics , Hyperthyroidism/complications , Mice , Bone Resorption/metabolism , Bone Resorption/genetics , Osteoporosis/metabolism , Osteoporosis/genetics , Osteoporosis/etiology , Osteoporosis/pathology , Osteoclasts/metabolism , Male , Cell Differentiation
2.
Front Endocrinol (Lausanne) ; 15: 1298531, 2024.
Article En | MEDLINE | ID: mdl-38745961

Introduction: The relationship between intervertebral disc degeneration (IVDD) and osteoporosis (OP), diagnosed primarily using bone mineral density (BMD), remains unclear so far. The present study, therefore, aimed to investigate the potential relationship between osteoporosis and intervertebral disc degeneration using Mendelian randomization and genome-wide association analyses. Specifically, the impact of bone mineral density on the development of intervertebral disc degeneration was evaluated. Materials and methods: The genome-wide association studies (GWAS) summary data of OP/BMDs and IVDD were collected from the FinnGen consortium, the GEFOS consortium, and MRC-IEU. The relationship between IVDD and OP was then explored using TSMR. The inverse-variance weighted (IVW) method was adopted as the primary effect estimate, and the reliability and stability of the results were validated using various methods, including MR-Egger, weighted median, simple mode, weighted mode, and MR-PRESSO. Results: No significant causal relationship was observed between OP and IVDD (IVW, P > 0.05) or between femoral neck BMD (FA-BMD) and IVDD when OP and FA-BMD were used as exposures. However, increased levels of total body BMD (TB-BMD) and lumbar spine BMD (LS-BMD) were revealed as significant risk factors for IVDD (TB-BMD: IVW, OR = 1.201, 95% CI: 1.123-1.284, P = 8.72 × 10-8; LS-BMD: IVW, OR = 1.179, 95% CI: 1.083-1.284, P = 1.43 × 10-4). Interestingly, both heel BMD (eBMD) and femur neck BMD (FN-BMD) exhibited potential causal relationships (eBMD: IVW, OR = 1.068, 95% CI: 1.008-1.131, P = 0.0248; FN-BMD, IVW, OR = 1.161, 95% CI: 1.041-1.295, P = 0.0074) with the risk of IVDD. The reverse MR analysis revealed no statistically causal impact of IVDD on OP and the level of BMD (P > 0.05). Conclusion: OP and the level of FA-BMD were revealed to have no causal relationship with IVDD. The increased levels of TB-BMD and LS-BMD could promote the occurrence of IVDD. Both eBMD and FN-BMD have potential causal relationships with the risk of IVDD. No significant relationship exists between IVDD and the risk of OP. Further research is warranted to comprehensively comprehend the molecular mechanisms underlying the impact of OP and BMD on IVDD and vice versa.


Bone Density , Genome-Wide Association Study , Intervertebral Disc Degeneration , Mendelian Randomization Analysis , Osteoporosis , Humans , Intervertebral Disc Degeneration/genetics , Bone Density/genetics , Osteoporosis/genetics , Osteoporosis/etiology , Female , Polymorphism, Single Nucleotide , Risk Factors , Male
3.
J Cell Mol Med ; 28(9): e18141, 2024 May.
Article En | MEDLINE | ID: mdl-38742851

Type 2 diabetes mellitus (T2D) and osteoporosis (OP) are systemic metabolic diseases and often coexist. The mechanism underlying this interrelationship remains unclear. We downloaded microarray data for T2D and OP from the Gene Expression Omnibus (GEO) database. Using weighted gene co-expression network analysis (WGCNA), we identified co-expression modules linked to both T2D and OP. To further investigate the functional implications of these associated genes, we evaluated enrichment using ClueGO software. Additionally, we performed a biological process analysis of the genes unique in T2D and OP. We constructed a comprehensive miRNA-mRNA network by incorporating target genes and overlapping genes from the shared pool. Through the implementation of WGCNA, we successfully identified four modules that propose a plausible model that elucidates the disease pathway based on the associated and distinct gene profiles of T2D and OP. The miRNA-mRNA network analysis revealed co-expression of PDIA6 and SLC16A1; their expression was upregulated in patients with T2D and islet ß-cell lines. Remarkably, PDIA6 and SLC16A1 were observed to inhibit the proliferation of pancreatic ß cells and promote apoptosis in vitro, while downregulation of PDIA6 and SLC16A1 expression led to enhanced insulin secretion. This is the first study to reveal the significant roles of PDIA6 and SLC16A1 in the pathogenesis of T2D and OP, thereby identifying additional genes that hold potential as indicators or targets for therapy.


Diabetes Mellitus, Type 2 , Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs , Osteoporosis , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Humans , Osteoporosis/genetics , Osteoporosis/metabolism , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation , Apoptosis/genetics , Transcriptome/genetics , Cell Proliferation/genetics , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Insulin/metabolism
4.
Front Endocrinol (Lausanne) ; 15: 1392063, 2024.
Article En | MEDLINE | ID: mdl-38715801

Introduction: Understanding the genetic factors contributing to variations in bone mineral density (BMD) and vitamin D could provide valuable insights into the pathogenesis of osteoporosis. This study aimed to evaluate the association of single nucleotide variants in MARK3 (rs11623869), PLCB4 (rs6086746), and GEMIN2 (rs2277458) with BMD in Mexican women. Methods: The gene-gene interaction was evaluated in these variants in serum 25(OH)D levels and BMD. A genetic risk score (GRS) was created on the basis of the three genetic variants. Genotyping was performed using predesigned TaqMan assays. Results: A significant association was found between the rs6086746-A variant and BMD at the total hip, femoral neck, and lumbar spine, in women aged 45 years or older. However, no association was observed between the variants rs11623869 and rs2277458. The rs11623869 × rs2277458 interaction was associated with total hip (p=0.002) and femoral neck BMD (p=0.013). Similarly, for vitamin D levels, we observed an interaction between the variants rs6086746 × rs2277458 (p=0.021). GRS revealed a significant association with total hip BMD (p trend=0.003) and femoral neck BMD (p trend=0.006), as well as increased vitamin D levels (p trend=0.0003). These findings provide evidence of the individual and joint effect of the MARK3, PLCB4, and GEMIN2 variants on BMD and serum vitamin D levels in Mexican women. Discussion: This knowledge could help to elucidate the interaction mechanism between BMD-related genetic variants and 25OHD, contributing to the determination of the pathogenesis of osteoporosis and its potential implications during early interventions.


Bone Density , Polymorphism, Single Nucleotide , Vitamin D , Humans , Female , Bone Density/genetics , Mexico , Middle Aged , Vitamin D/blood , Vitamin D/analogs & derivatives , Protein Serine-Threonine Kinases/genetics , Osteoporosis/genetics , Osteoporosis/blood , Aged , Adult , GTP-Binding Proteins/genetics , Genetic Predisposition to Disease , Genotype
5.
FASEB J ; 38(9): e23657, 2024 May 15.
Article En | MEDLINE | ID: mdl-38713087

The pathogenesis of osteoporosis (OP) is closely associated with the disrupted balance between osteogenesis and adipogenesis in bone marrow-derived mesenchymal stem cells (BMSCs). We analyzed published single-cell RNA sequencing (scRNA-seq) data to dissect the transcriptomic profiles of bone marrow-derived cells in OP, reviewing 56 377 cells across eight scRNA-seq datasets from femoral heads (osteoporosis or osteopenia n = 5, osteoarthritis n = 3). Seventeen genes, including carboxypeptidase M (CPM), were identified as key osteogenesis-adipogenesis regulators through comprehensive gene set enrichment, differential expression, regulon activity, and pseudotime analyses. In vitro, CPM knockdown reduced osteogenesis and promoted adipogenesis in BMSCs, while adenovirus-mediated CPM overexpression had the reverse effects. In vivo, intraosseous injection of CPM-overexpressing BMSCs mitigated bone loss in ovariectomized mice. Integrated scRNA-seq and bulk RNA sequencing analyses provided insight into the MAPK/ERK pathway's role in the CPM-mediated regulation of BMSC osteogenesis and adipogenesis; specifically, CPM overexpression enhanced MAPK/ERK signaling and osteogenesis. In contrast, the ERK1/2 inhibitor binimetinib negated the effects of CPM overexpression. Overall, our findings identify CPM as a pivotal regulator of BMSC differentiation, which provides new clues for the mechanistic study of OP.


Adipogenesis , MAP Kinase Signaling System , Mesenchymal Stem Cells , Metalloendopeptidases , Osteogenesis , Single-Cell Analysis , Animals , Osteogenesis/physiology , Osteogenesis/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , Female , Transcriptome , Carboxypeptidases/metabolism , Carboxypeptidases/genetics , Humans , Cell Differentiation , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Mice, Inbred C57BL , GPI-Linked Proteins
6.
Mol Biol Rep ; 51(1): 636, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727863

BACKGROUND: Osteoporosis (OP), characterized by compromised bone integrity and increased fracture risk, poses a significant health challenge. Circular RNAs (circRNAs) have emerged as crucial regulators in various pathophysiological processes, prompting investigation into their role in osteoporosis. This study aimed to elucidate the involvement of circCOX6A1 in OP progression and understand its underlying molecular mechanisms. The primary objective was to explore the impact of circCOX6A1 on bone marrow-derived mesenchymal stem cells (BMSCs) and its potential interactions with miR-512-3p and DYRK2. METHODS: GSE161361 microarray analysis was employed to assess circCOX6A1 expression in OP patients. We utilized in vitro and in vivo models, including BMSC cultures, osteogenic differentiation assays, and an OVX-induced mouse model of OP. Molecular techniques such as quantitative RT-PCR, western blotting, and functional assays like alizarin red staining (ARS) were employed to evaluate circCOX6A1 effects on BMSC proliferation, apoptosis, and osteogenic differentiation. The interaction between circCOX6A1, miR-512-3p, and DYRK2 was investigated through dual luciferase reporter assays, RNA immunoprecipitation, and RNA pull-down assays. RESULTS: CircCOX6A1 was found to be upregulated in osteoporosis patients, and its expression inversely correlated with osteogenic differentiation of BMSCs. CircCOX6A1 knockdown enhanced osteogenic differentiation, as evidenced by increased mineralized nodule formation and upregulation of osteogenic markers. In vivo, circCOX6A1 knockdown ameliorated osteoporosis progression in OVX mice. Mechanistically, circCOX6A1 acted as a sponge for miR-512-3p, subsequently regulating DYRK2 expression. CONCLUSION: This study provides compelling evidence for the role of circCOX6A1 in osteoporosis pathogenesis. CircCOX6A1 negatively regulates BMSC osteogenic differentiation through the miR-512-3p/DYRK2 axis, suggesting its potential as a therapeutic target for mitigating OP progression.


Cell Differentiation , Dyrk Kinases , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Osteoporosis , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , RNA, Circular , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Osteogenesis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Cell Differentiation/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Humans , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Mice , Mesenchymal Stem Cells/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Female , Cell Proliferation/genetics , Disease Models, Animal , Apoptosis/genetics , Middle Aged
7.
Mol Biol Rep ; 51(1): 622, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709309

Menopause is a normal physiological process accompanied by changes in various physiological states. The incidence of vascular calcification (VC) increases each year after menopause and is closely related to osteoporosis (OP). Although many studies have investigated the links between VC and OP, the interaction mechanism of the two under conditions of estrogen loss remains unclear. MicroRNAs (miRNAs), which are involved in epigenetic modification, play a critical role in estrogen-mediated mineralization. In the past several decades, miRNAs have been identified as biomarkers or therapeutic targets in diseases. Thus, we hypothesize that these small molecules can provide new diagnostic and therapeutic approaches. In this review, we summarize the close interactions between VC and OP and the role of miRNAs in their interplay.


MicroRNAs , Postmenopause , Vascular Calcification , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Vascular Calcification/genetics , Vascular Calcification/metabolism , Postmenopause/genetics , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/metabolism , Estrogens/metabolism , Biomarkers/metabolism , Osteoporosis/genetics , Osteoporosis/metabolism , Epigenesis, Genetic
8.
BMC Musculoskelet Disord ; 25(1): 345, 2024 May 02.
Article En | MEDLINE | ID: mdl-38693494

BACKGROUND: Educational duration might play a vital role in preventing the occurrence and development of osteoporosis(OP). PURPOSE: To assess the causal effect of educational duration on bone mineral density(BMD) and risk factors for OP by Mendelian randomization(MR) study. METHODS: The causal relationship was analyzed using data from genome-wide association study(GWAS). Inverse variance weighting (IVW) was used as the main analysis method. Horizontal pleiotropy was identified by MR-Egger intercept test, MR pleiotropy residual sum and outlier (MR-PRESSO) test. The leave-one-out method was used as a sensitivity analysis. RESULTS: The IVW results indicated that there was a positive causal relationship between educational duration and BMD (OR = 1.012, 95%CI:1.003-1.022), physical activity(PA) (OR = 1.156, 95%CI:1.032-1.295), calcium consumption (OR = 1.004, 95%CI:1.002-1.005), and coffee intake (OR = 1.019, 95%CI:1.014-1.024). There was a negative association between whole body fat mass (OR = 0.950, 95%CI:0.939-0.961), time for vigorous PA (OR = 0.955, 95%CI:0.939-0.972), sunbath (OR = 0.987, 95%CI:0.986-0.989), salt consumption (OR = 0.965, 95%CI:0.959-0.971), fizzy drink intake (OR = 0.985, 95%CI:0.978-0.992), smoking (OR = 0.969, 95%CI:0.964-0.975), and falling risk (OR = 0.976, 95%CI:0.965-0.987). There was no significant association between educational duration and lean mass, time for light-to-moderate PA, milk intake, and alcohol intake. Horizontal pleiotropy was absent in this study. The results were robust under sensitivity analyses. CONCLUSION: A longer educational duration was causally linked with increased BMD. No causal relationship had been found between educational duration and lean mass, time for light-to-moderate PA, milk intake, and alcohol consumption as risk factors for osteoporosis.


Bone Density , Exercise , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoporosis , Humans , Osteoporosis/epidemiology , Osteoporosis/etiology , Osteoporosis/genetics , Risk Factors , Educational Status , Time Factors , Female
9.
FASEB J ; 38(9): e23642, 2024 May 15.
Article En | MEDLINE | ID: mdl-38690719

Alterations to the human organism that are brought about by aging are comprehensive and detrimental. Of these, an imbalance in bone homeostasis is a major outward manifestation of aging. In older adults, the decreased osteogenic activity of bone marrow mesenchymal stem cells and the inhibition of bone marrow mesenchymal stem cell differentiation lead to decreased bone mass, increased risk of fracture, and impaired bone injury healing. In the past decades, numerous studies have reported the epigenetic alterations that occur during aging, such as decreased core histones, altered DNA methylation patterns, and abnormalities in noncoding RNAs, which ultimately lead to genomic abnormalities and affect the expression of downstream signaling osteoporosis treatment and promoter of fracture healing in older adults. The current review summarizes the impact of epigenetic regulation mechanisms on age-related bone homeostasis imbalance.


Aging , Bone and Bones , Epigenesis, Genetic , Homeostasis , Humans , Aging/genetics , Aging/physiology , Animals , Bone and Bones/metabolism , DNA Methylation , Osteoporosis/genetics , Osteoporosis/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Osteogenesis/physiology , Histones/metabolism
10.
Calcif Tissue Int ; 114(6): 559-567, 2024 Jun.
Article En | MEDLINE | ID: mdl-38634881

We aimed to explore the causal effect of daytime napping on the risk of osteoporosis and the mediation role of testosterone in explaining this relationship. Summary data for Mendelian randomization (MR) analysis were obtained from the IEU OpenGWAS database. Univariable MR(UVMR) analysis and multiple sensitivity analyses were applied to explore the casual relationship between daytime napping and bone mineral density (BMD)/osteoporosis. We also conducted multivariable Mendelian randomization (MVMR) analysis to evaluate the correlation between testosterone-associated single-nucleotide variations and BMD/osteoporosis. Then, mediation analysis was performed to explore whether the association between daytime napping and BMD/osteoporosis was mediated via testosterone. Genetically predicted daytime napping was significantly associated with femoral neck BMD (ß [95% CI]: 0.2573 [0.0487, 0.4660]; P = 0.0156), lumbar spine BMD (ß [95% CI]: 0.2526 [0.0211, 0.4840]; P = 0.0324), and osteoporosis (OR [95% CI]: 0.5063 [0.2578, 0.9942]; P = 0.0481). ß and 95%CIs indicate the standard deviation (SD) unit of BMD increase per category increase in daytime napping. OR and 95%CIs represent the change in the odds ratio of osteoporosis per category increase in daytime napping. We observed a potentially causal effect of more frequent daytime napping on higher BMD and a lower risk of osteoporosis. Daytime napping was causally associated with a higher level of bioavailable testosterone (ß [95% CI]: 0.1397 [0.0619, 0.2175]; P = 0.0004). ß and 95%CIs represent the change in the SD of testosterone per category increase in daytime napping. Furthermore, the causal effects of daytime napping on BMD/osteoporosis were partly mediated by bioavailable testosterone. Daytime napping can efficiently increase BMD and reduce the risk of osteoporosis, and testosterone plays a key mediating role in this process.


Bone Density , Mendelian Randomization Analysis , Osteoporosis , Sleep , Testosterone , Humans , Osteoporosis/epidemiology , Osteoporosis/genetics , Testosterone/blood , Sleep/physiology , Polymorphism, Single Nucleotide , Male , White People , Female , Risk Factors , Europe/epidemiology
11.
J Affect Disord ; 356: 371-378, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38608764

BACKGROUND: Osteoporosis and major depressive disorder (MDD) represent two significant health challenges globally, particularly among perimenopausal women. This study utilizes NHANES data and Mendelian randomization (MR) analysis to explore the link between them, aiming to provide a basis for intervention strategies for this group. METHODS: The study analyzed NHANES 2007-2018 data using weighted logistic regression in R software to evaluate the link between MDD and osteoporosis risk. Then, a two-sample MR analysis with GWAS summary statistics was performed, mainly using the IVW method. Additional validation included MR Egger, Weighted Median, Mode, and MR-PRESSO methods. RESULTS: The research analysis indicated a significant link between MDD and the risk of osteopenia/osteoporosis. Our analysis revealed a significant positive relationship between MDD and both femoral neck osteoporosis (OR = 6.942 [95 % CI, 1.692-28.485]) and trochanteric osteoporosis (OR = 4.140 [95 % CI, 1.699-10.089]). In analyses related to osteopenia, a significant positive correlation was observed between MDD and both total femoral osteopenia (OR = 3.309 [95 % CI, 1.577-6.942]) and trochanteric osteopenia (OR = 2.467 [95 % CI, 1.004-6.062]). Furthermore, in the MR analysis, genetically predicted MDD was causally associated with an increased risk of osteoporosis via the IVW method (P = 0.013). LIMITATIONS: Our study was limited by potential selection bias due to excluding subjects with missing data, and its applicability was primarily to European and American populations. CONCLUSION: Integrating NHANES and MR analyses, a robust correlation between MDD and osteoporosis was identified, emphasizing the significance of addressing this comorbidity within clinical practice and meriting further investigation.


Depressive Disorder, Major , Mendelian Randomization Analysis , Osteoporosis , Perimenopause , Humans , Female , Depressive Disorder, Major/genetics , Depressive Disorder, Major/epidemiology , Middle Aged , Osteoporosis/genetics , Osteoporosis/epidemiology , Genome-Wide Association Study , Nutrition Surveys , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/epidemiology , Risk Factors , Adult
12.
BMC Med Genomics ; 17(1): 99, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38650009

RESEARCH BACKGROUND AND PURPOSE: Osteoporosis (OP) is one of the most common bone diseases worldwide, characterized by low bone mineral density and susceptibility to pathological fractures, especially in postmenopausal women and elderly men. Ferroptosis is one of the newly discovered forms of cell death regulated by genes in recent years. Many studies have shown that ferroptosis is closely related to many diseases. However, there are few studies on ferroptosis in osteoporosis, and the mechanism of ferroptosis in osteoporosis is still unclear. This study aims to identify biomarkers related to osteoporosis ferroptosis from the GEO (Gene Expression Omnibus) database through bioinformatics technology, and to mine potential therapeutic small molecule compounds through molecular docking technology, trying to provide a basis for the diagnosis and treatment of osteoporosis in the future. MATERIALS AND METHODS: We downloaded the ferroptosis-related gene set from the FerrDb database ( http://www.zhounan.org/ferrdb/index.html ), downloaded the data sets GSE56815 and GSE7429 from the GEO database, and used the R software "limma" package to screen differentially expressed genes (DEGs) from GSE56815, and intersected with the ferroptosis gene set to obtain ferroptosis-related DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed by the R software "clusterProfiler" package. The random forest model was further screened to obtain essential ferroptosis genes. R software "corrplot" package was used for correlation analysis of essential ferroptosis genes, and the Wilcox test was used for significance analysis. The lncRNA-miRNA-mRNA-TF regulatory network was constructed using Cytoscape software. The least absolute shrinkage and selection operator (LASSO) was used to construct a disease diagnosis model, and a Receiver operating characteristic (ROC) curve was drawn to evaluate the diagnostic performance, and then GSE7429 was used to verify the reliability of the diagnosis model. Molecular docking technology was used to screen potential small molecule compounds from the Drugbank database. Finally, a rat osteoporosis model was constructed, and peripheral blood mononuclear cells were extracted for qRT-PCR detection to verify the mRNA expression levels of crucial ferroptosis genes. RESULT: Six DEGs related to ferroptosis were initially screened out. GO function and KEGG pathway enrichment analysis showed that ferroptosis-related DEGs were mainly enriched in signaling pathways such as maintenance of iron ion homeostasis, copper ion binding function, and ferroptosis. The random forest model identified five key ferroptosis genes, including CP, FLT3, HAMP, HMOX1, and SLC2A3. Gene correlation analysis found a relatively low correlation between these five key ferroptosis genes. The lncRNA-miRNA-mRNA-TF regulatory network shows that BAZ1B and STAT3 may also be potential molecules. The ROC curve of the disease diagnosis model shows that the model has a good diagnostic performance. Molecular docking technology screened out three small molecule compounds, including NADH, Midostaurin, and Nintedanib small molecule compounds. qRT-PCR detection confirmed the differential expression of CP, FLT3, HAMP, HMOX1 and SLC2A3 between OP and normal control group. CONCLUSION: This study identified five key ferroptosis genes (CP, FLT3, HAMP, HMOX1, and SLC2A3), they were most likely related to OP ferroptosis. In addition, we found that the small molecule compounds of NADH, Midostaurin, and Nintedanib had good docking scores with these five key ferroptosis genes. These findings may provide new clues for the early diagnosis and treatment of osteoporosis in the future.


Computational Biology , Ferroptosis , Molecular Docking Simulation , Osteoporosis , Ferroptosis/drug effects , Ferroptosis/genetics , Osteoporosis/drug therapy , Osteoporosis/genetics , Computational Biology/methods , Humans , Animals , Biomarkers/metabolism , Rats , Gene Ontology , Gene Expression Profiling
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 256-262, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38645858

Runt-related transcription factor (RUNX1) is a transcription factor closely involved in hematopoiesis. RUNX1 gene mutation plays an essential pathogenic role in the initiation and development of hematological tumors, especially in acute myeloid leukemia. Recent studies have shown that RUNX1 is also involved in the regulation of bone development and the pathological progression of bone-related diseases. RUNX1 promotes the differentiation of mesenchymal stem cells into chondrocytes and osteoblasts and modulates the maturation and extracellular matrix formation of chondrocytes. The expression of RUNX1 in mesenchymal stem cells, chondrocytes, and osteoblasts is of great significance for maintaining normal bone development and the mass and quality of bones. RUNX1 also inhibits the differentiation and bone resorptive activities of osteoclasts, which may be influenced by sexual dimorphism. In addition, RUNX1 deficiency contributes to the pathogenesis of osteoarthritis, delayed fracture healing, and osteoporosis, which was revealed by the RUNX1 conditional knockout modeling in mice. However, the roles of RUNX1 in regulating the hypertrophic differentiation of chondrocytes, the sexual dimorphism of activities of osteoclasts, as well as bone loss in diabetes mellitus, senescence, infection, chronic inflammation, etc, are still not fully understood. This review provides a systematic summary of the research progress concerning RUNX1 in the field of bone biology, offering new ideas for using RUNX1 as a potential target for bone related diseases, especially osteoarthritis, delayed fracture healing, and osteoporosis.


Bone Development , Cell Differentiation , Chondrocytes , Core Binding Factor Alpha 2 Subunit , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Animals , Bone Development/physiology , Bone Development/genetics , Chondrocytes/metabolism , Osteoblasts/metabolism , Osteoblasts/cytology , Osteoclasts/metabolism , Osteoclasts/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , Bone Diseases/genetics , Bone Diseases/metabolism , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/etiology
14.
Mol Biol Rep ; 51(1): 530, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637425

BACKGROUND: Osteoporosis (OP) is characterized by bone mass decrease and bone tissue microarchitectural deterioration in bone tissue. This study identified potential biomarkers for early diagnosis of OP and elucidated the mechanism of OP. METHODS: Gene expression profiles were downloaded from Gene Expression Omnibus (GEO) for the GSE56814 dataset. A gene co-expression network was constructed using weighted gene co-expression network analysis (WGCNA) to identify key modules associated with healthy and OP samples. Functional enrichment analysis was conducted using the R clusterProfiler package for modules to construct the transcriptional regulatory factor networks. We used the "ggpubr" package in R to screen for differentially expressed genes between the two samples. Gene set variation analysis (GSVA) was employed to further validate hub gene expression levels between normal and OP samples using RT-PCR and immunofluorescence to evaluate the potential biological changes in various samples. RESULTS: There was a distinction between the normal and OP conditions based on the preserved significant module. A total of 100 genes with the highest MM scores were considered key genes. Functional enrichment analysis suggested that the top 10 biological processes, cellular component and molecular functions were enriched. The Toll-like receptor signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, osteoclast differentiation, JAK-STAT signaling pathway, and chemokine signaling pathway were identified by Kyoto Encyclopedia of Genes and Genomes pathway analysis. SIRT1 and ZNF350 were identified by Wilcoxon algorithm as hub differentially expressed transcriptional regulatory factors that promote OP progression by affecting oxidative phosphorylation, apoptosis, PI3K-Akt-mTOR signaling, and p53 pathway. According to RT-PCR and immunostaining results, SIRT1 and ZNF350 levels were significantly higher in OP samples than in normal samples. CONCLUSION: SIRT1 and ZNF350 are important transcriptional regulatory factors for the pathogenesis of OP and may be novel biomarkers for OP treatment.


Osteoporosis , Sirtuin 1 , Humans , Sirtuin 1/genetics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Osteoporosis/genetics , Biomarkers , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Repressor Proteins
15.
Eur Rev Med Pharmacol Sci ; 28(6): 2237-2249, 2024 Mar.
Article En | MEDLINE | ID: mdl-38567587

OBJECTIVE: Osteoporosis (OP), a persistent metabolic bone disorder linked with inflammation, has an undetermined cause. In our research, we employed bidirectional Mendelian randomization (MR) to investigate the interplay between OP and inflammation agents. MATERIALS AND METHODS: We performed two-way pooled-level MR analyses to characterize the causal relationship between 41 circulating inflammatory modulators and OP. Genetic variation data for the 41 regulatory factors associated with inflammation were obtained from genome-wide association studies (GWASs) of human cytokines. Bone mineral density (BMD) was utilized as a phenotype for OP in our approach. The BMD dataset, sourced from the GEFOS consortium, a large GWAS meta-analysis study and UK Biobank, was classified based on varied sections [whole body (TB), lumbar spine (LS), femoral neck (FN), forearm (FA), and heel] and age brackets (0-15 years, 15-30 years, 30-45 years, 45-60 years, and above 60 years). Primary MR analyses were executed using the inverse variance weighting (IVW) method, and sensitivity analyses were performed using the MR-Egger, weighted median, simple model, and weighted model. Cochran's Q test was utilized to evaluate the existence of heterogeneity. We used MR-Egger regression and MR multiplicity of residuals and outliers (MR-PRESSO) to assess pleiotropy. RESULTS: After false discovery rate (FDR) correction, elevated levels of circulating interleukin-8 (IL-8) [ß = 0.072 (0.031-0.114), p < 0.01], macrophage inflammatory protein-1b (MIP-1ß) [ß = 0.008 (0.003-0.013), p < 0.01; ß = 0.026 (0.009-0.042), p < 0.01], and cutaneous T-cell attracting chemokine (CTACK) [ß = 0.037 (0.017-0.056), p < 0.01] was associated with a reduced risk of OP. Reduced levels of hepatocyte growth factor (HGF), IL-1ra, IL-10, macrophage colony-stimulating factor (MCSF), and MIP-1α were associated with a reduced risk of OP [ß = -0.030 (-0.047 - -0.013), p < 0.01; ß = -0.025 (-0.041 - -0.010), p < 0.01; ß = -0.018 (-0.029 - -0.007), p < 0.01; ß = -0.060 (-0.097 - -0.024), p < 0.01; ß = -0.118 (-0.190 - -0.047), p < 0.01]. We observed a significant causal correlation between FN-BMD and MCP-3 (FDR < 0.05). The occurrence of OP may also lead to elevated levels of MCP3 [ß = -0.466 (-0.714 - -0.217), p < 0.01]. The reliability of the results was confirmed by sensitivity analyses. CONCLUSIONS: This study demonstrated the pathogenic role of circulating inflammatory modulators in OP using bidirectional MR analysis. This further deepens the understanding of OP pathogenesis and provides new ideas for therapeutic intervention in OP.


Genome-Wide Association Study , Osteoporosis , Adolescent , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Inflammation/genetics , Mendelian Randomization Analysis , Osteoporosis/genetics , Reproducibility of Results , Meta-Analysis as Topic , Young Adult , Adult , Middle Aged , Aged
16.
BMC Musculoskelet Disord ; 25(1): 317, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654244

BACKGROUND: The effects on bone mineral density (BMD)/fracture between type 1 (T1D) and type 2 (T2D) diabetes are unknown. Therefore, we aimed to investigate the causal relationship between the two types of diabetes and BMD/fracture using a Mendelian randomization (MR) design. METHODS: A two-sample MR study was conducted to examine the causal relationship between diabetes and BMD/fracture, with three phenotypes (T1D, T2D, and glycosylated hemoglobin [HbA1c]) of diabetes as exposures and five phenotypes (femoral neck BMD [FN-BMD], lumbar spine BMD [LS-BMD], heel-BMD, total body BMD [TB-BMD], and fracture) as outcomes, combining MR-Egger, weighted median, simple mode, and inverse variance weighted (IVW) sensitivity assessments. Additionally, horizontal pleiotropy was evaluated and corrected using the residual sum and outlier approaches. RESULTS: The IVW method showed that genetically predicted T1D was negatively associated with TB-BMD (ß = -0.018, 95% CI: -0.030, -0.006), while T2D was positively associated with FN-BMD (ß = 0.033, 95% CI: 0.003, 0.062), heel-BMD (ß = 0.018, 95% CI: 0.006, 0.031), and TB-BMD (ß = 0.050, 95% CI: 0.022, 0.079). Further, HbA1c was not associated with the five outcomes (ß ranged from - 0.012 to 0.075). CONCLUSIONS: Our results showed that T1D and T2D have different effects on BMD at the genetic level. BMD decreased in patients with T1D and increased in those with T2D. These findings highlight the complex interplay between diabetes and bone health, suggesting potential age-specific effects and genetic influences. To better understand the mechanisms of bone metabolism in patients with diabetes, further longitudinal studies are required to explain BMD changes in different types of diabetes.


Bone Density , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Mendelian Randomization Analysis , Osteoporosis , Humans , Bone Density/genetics , Osteoporosis/genetics , Osteoporosis/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis , Lumbar Vertebrae/diagnostic imaging , Femur Neck/diagnostic imaging , Phenotype
17.
Braz J Med Biol Res ; 57: e13339, 2024.
Article En | MEDLINE | ID: mdl-38656074

The osseous vascular endothelium encompasses a vast intricate framework that regulates bone remodeling. Osteoporosis, an age-associated systemic bone disease, is characterized by the degeneration of the vascular architecture. Nevertheless, the precise mechanisms underpinning the metamorphosis of endothelial cells (ECs) with advancing age remain predominantly enigmatic. In this study, we conducted a systematic analysis of differentially expressed genes (DEGs) and the associated pathways in juvenile and mature femoral ECs, utilizing data sourced from the Gene Expression Omnibus (GEO) repositories (GSE148804) and employing bioinformatics tools. Through this approach, we successfully discerned six pivotal genes, namely Adamts1, Adamts2, Adamts4, Adamts14, Col5a1, and Col5a2. Subsequently, we constructed a miRNA-mRNA network based on miRNAs displaying differential expression between CD31hiEMCNhi and CD31lowEMCNlow ECs, utilizing online repositories for prediction. The expression of miR-466i-3p and miR-466i-5p in bone marrow ECs exhibited an inverse correlation with age. Our in vivo experiments additionally unveiled miR-466i-5p as a pivotal regulator in osseous ECs and a promising therapeutic target for age-related osteoporosis.


Endothelial Cells , MicroRNAs , Endothelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Animals , Osteoporosis/genetics , Gene Expression Profiling , RNA, Messenger/genetics , Mice
18.
Orphanet J Rare Dis ; 19(1): 144, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575988

BACKGROUND: Osteoporosis and its primary complication, fragility fractures, contribute to substantial global morbidity and mortality. Gaucher disease (GD) is caused by glucocerebrosidase (GBA1) deficiency, leading to skeletal complications. This study aimed to investigate the impact of the GBA1 gene on osteoporosis progression in GD patients and the specific populations. METHODS: We selected 8115 patients with osteoporosis (T-score ≤ - 2.5) and 55,942 healthy individuals (T-score > - 1) from a clinical database (N = 95,223). Monocytes from GD patients were evaluated in relation to endoplasmic reticulum (ER) stress, inflammasome activation, and osteoclastogenesis. An in vitro model of GD patient's cells treated with adeno-associated virus 9 (AAV9)-GBA1 to assess GBA1 enzyme activity, chitotriosidase activity, ER stress, and osteoclast differentiation. Longitudinal dual-energy X-ray absorptiometry (DXA) data tracking bone density in patients with Gaucher disease (GD) undergoing enzyme replacement therapy (ERT) over an extended period. RESULTS: The GBA1 gene variant rs11264345 was significantly associated [P < 0.002, Odds Ratio (OR) = 1.06] with an increased risk of bone disease. Upregulation of Calnexin, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) and Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) was positively associated with osteoclastogenesis in patients with GD. In vitro AAV9-GBA1 treatment of GD patient cells led to enhanced GBA1 enzyme activity, reduced chitotriosidase activity, diminished ER stress, and decreased osteoclast differentiation. Long-term bone density data suggests that initiating ERT earlier in GD leads to greater improvements in bone density. CONCLUSIONS: Elevated ER stress and inflammasome activation are indicative of osteoporosis development, suggesting the need for clinical monitoring of patients with GD. Furthermore, disease-associated variant in the GBA1 gene may constitute a risk factor predisposing specific populations to osteoporosis.


Gaucher Disease , Osteoporosis , Humans , Bone Density/genetics , Gaucher Disease/drug therapy , Glucosylceramidase/therapeutic use , Inflammasomes , Osteoporosis/genetics , Osteoporosis/drug therapy
19.
Sci Rep ; 14(1): 8153, 2024 04 08.
Article En | MEDLINE | ID: mdl-38589566

Osteoporosis is usually caused by excessive bone resorption and energy metabolism plays a critical role in the development of osteoporosis. However, little is known about the role of energy metabolism-related genes in osteoporosis. This study aimed to explore the important energy metabolism-related genes involved in the development of osteoporosis and develop a diagnosis signature for osteoporosis. The GSE56814, GSE62402, and GSE7158 datasets were downloaded from the NCBI Gene Expression Omnibus. The intersection of differentially expressed genes between high and low levels of body mineral density (BMD) and genes related to energy metabolism were screened as differentially expressed energy metabolism genes (DE-EMGs). Subsequently, a DE-EMG-based diagnostic model was constructed and differential expression of genes in the model was validated by RT-qPCR. Furthermore, a receiver operating characteristic curve and nomogram model were constructed to evaluate the predictive ability of the diagnostic model. Finally, the immune cell types in the merged samples and networks associated with the selected optimal DE-EMGs were constructed. A total of 72 overlapped genes were selected as DE-EMGs, and a five DE-EMG based diagnostic model consisting B4GALT4, ADH4, ACAD11, B4GALT2, and PPP1R3C was established. The areas under the curve of the five genes in the merged training dataset and B4GALT2 in the validation dataset were 0.784 and 0.790, respectively. Moreover, good prognostic prediction ability was observed using the nomogram model (C index = 0.9201; P = 5.507e-14). Significant differences were observed in five immune cell types between the high- and low-BMD groups. These included central memory, effector memory, and activated CD8 T cells, as well as regulatory T cells and activated B cells. A network related to DE-EMGs was constructed, including hsa-miR-23b-3p, DANCR, 17 small-molecule drugs, and two Kyoto Encyclopedia of Genes and Genomes pathways, including metabolic pathways and pyruvate metabolism. Our findings highlighted the important roles of DE-EMGs in the development of osteoporosis. Furthermore, the DANCR/hsa-miR-23b-3p/B4GALT4 axis might provide novel molecular insights into the process of osteoporosis development.


Bone Resorption , MicroRNAs , Osteoporosis , Humans , B-Lymphocytes , Osteoporosis/diagnosis , Osteoporosis/genetics , Energy Metabolism/genetics
20.
J Cell Mol Med ; 28(9): e18287, 2024 May.
Article En | MEDLINE | ID: mdl-38685675

Single immobilization theory cannot fully account for the extensive bone loss observed after spinal cord injury (SCI). Bone marrow mesenchymal stem cells (BMSCs) are crucial in bone homeostasis because they possess self-renewal capabilities and various types of differentiation potential. This study aimed to explore the molecular mechanism of long non-coding RNA H19 in osteoporosis after SCI and provide new research directions for existing prevention strategies. We used small interfering RNA to knockdown H19 expression and regulated miR-29b-2p expression using miR-29b-3p mimetics and inhibitors. Western blotting, real-time fluorescence quantitative PCR, Alizarin red staining, alkaline phosphatase staining and double-luciferase reporter gene assays were used to assess gene expression, osteogenic ability and binding sites. lncRNA H19 was upregulated in BMSCs from the osteoporosis group, whereas miR-29b-3p was downregulated. We identified the binding sites between miR-29b-3p and lncRNAs H19 and DKK1. H19 knockdown promoted BMSCs' osteogenic differentiation, whereas miR-29b-3p inhibition attenuated this effect. We discovered potential binding sites for miR-29b-3p in lncRNAs H19 and DKK1. Our findings suggest that long non-coding RNA H19 mediates BMSCs' osteogenic differentiation in osteoporosis after SCI through the miR-29b-3p/DKK1 axis and by directly inhibiting the ß-catenin signalling pathway.


Cell Differentiation , Intercellular Signaling Peptides and Proteins , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Osteoporosis , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , MicroRNAs/metabolism , Osteogenesis/genetics , Cell Differentiation/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Animals , Osteoporosis/genetics , Osteoporosis/pathology , Osteoporosis/metabolism , Humans , Gene Expression Regulation , Male , Rats , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
...